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Abstract

Purpose: Lipid nanoparticle (LNP) formulations facilitate tumor
uptake and intracellular processing through an enhanced perme-
ation and retention effect (EPR), and currently multiple products are
undergoing clinical evaluation. Clusterin (CLU) is a cytoprotective
chaperone induced by androgen receptor (AR) pathway inhibition
to facilitate adaptive survival pathway signaling and treatment
resistance. In our study, we investigated the efficacy of siRNA tumor
delivery using LNP systems in an enzalutamide-resistant (ENZ-R)
castration-resistant prostate cancer (CRPC) model.

Experimental Design: Gene silencing of a luciferase reporter
gene in the PC-3M-luc stable cell line was first assessed in
subcutaneous and metastatic PC-3 xenograft tumors. Upon val-
idation, the effect of LNP siRNA targeting CLU in combination
with AR antisense oligonucleotides (ASO) was assessed in ENZ-R
CRPC LNCaP in vitro and in vivo models.

Introduction

Prostate cancer is the most prevalent cancer in men in the
Western world and the second leading cause of cancer deaths
among males in Western countries (1). Androgen receptor (AR)
signaling remains the key driver of castration-resistant prostate
cancer (CRPC). Potent AR pathway inhibitors like enzalutamide
(ENZ) inhibit AR nuclear translocation and transcriptional activ-
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Results: LNP LUC-siRNA silenced luciferase expression in PC-
3M-lucsubcutaneous xenograft and metastatic models. LNP CLU-
siRNA potently suppressed CLU and AR ASO-induced CLU and
AKT and ERK phosphorylation in ENZ-R LNCaP cells in vitro, more
potently inhibiting ENZ-R cell growth rates and increased apo-
ptosis when compared with AR-ASO monotherapy. In subcuta-
neous ENZ-R LNCaP xenografts, combinatory treatment of LNP
CLU-siRNA plus AR-ASO significantly suppressed tumor growth
and serum PSA levels compared with LNP LUC-siRNA (control)
and AR-ASO.

Conclusions: LNP siRNA can silence target genes in vivo and
enable inhibition of traditionally non-druggable genes like CLU
and other promising cotargeting approaches in ENZ-R CRPC
therapeutics. Clin Cancer Res; 21(21); 4845-55. ©2015 AACR.

ity (2, 3), but despite significant activity, progression to ENZ-
resistant (ENZ-R) CRPC frequently occurs. This progression
occurs with rising serum PSA levels, thereby implicating AR
importance in disease progression. Activation of adaptive survival
pathways that support AR signaling is an important mechanism of
treatment resistance. The molecular chaperone clusterin (CLU) is
induced by AR pathway inhibition and highly expressed in ENZ-R
CRPC (4), and as a mediator of the stress response confers
treatment resistance when overexpressed (5-7). CLU inhibits
stress-induced apoptosis by suppressing p53-activating stress
signals (8), and conformationally altered Bax (6, 8) in addition
to enhancing AKT phosphorylation (9) and transactivation of NF-
kB (10) and autophagy (11). In keeping with these cytoprotective
mechanisms, CLU inhibition potentiates activity of anticancer
therapy in many preclinical models (12), and is a promising target
for novel therapeutics.

Although small-interfering RNA (siRNA) offers the promise for
potent and specific gene silencing, poor accumulation at sites of
disease and intracellular translocation coupled with poor stabil-
ity, sensitivity to nucleases, immune stimulation, and rapid
clearance have made its therapeutic application difficult. A deliv-
ery system is crucial to the efficient delivery to target tissue in order
to overcome these shortcomings. Encapsulation of siRNA using a
lipid nanoparticle-based delivery system has shown to be crucial
in protecting the nucleic acid-based drug from nucleases as well as
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Translational Relevance

Suppression of androgen receptor (AR) signaling remains a
therapeutic goal for castration-resistant prostate cancer
(CRPC). Despite newer potent AR-pathway inhibitors, resis-
tance frequently occurs. Although cotargeting the AR with
adaptive survival pathways is a rational goal, many biologi-
cally relevant genes are undruggable with small-molecule
inhibitors. Gene silencing of non-druggable targets using
small-interfering RNA (siRNA) is a promising approach but
in vivo delivery remains problematic without a delivery system.
We developed a lipid nanoparticle (LNP) system demonstrat-
ing silencing of luciferase reporter gene using LNP-LUC-siRNA
in both subcutaneous and metatastic PC3-Luc-xenograft mod-
els. LNP-CLU-siRNA inhibited AR-antisense-induced upregu-
lation of clusterin (CLU) in vitro and in vivo, and significantly
suppressed tumor growth and serum PSA levels in enzaluta-
mide-resistant (ENZ-R) LNCaP xenografts compared with AR-
antisense monotherapy. These data provide novel proof-of-
principle that LNP-siRNA can target genes in vivo enabling
inhibition of traditionally non-druggable genes like CLU and
other promising cotargeting approaches in ENZ-R CRPC
therapeutics.

prolonging circulation, reducing immune stimulation, and
improving intracellular uptake (13). The most clinically advanced
delivery of siRNA uses LNP and currently there are six different
siRNAs encapsulated in LNP drugs undergoing clinical studies.
The most promising study looks at the treatment of transthyretin-
induced amyloidosis using a second-generation cationic lipid
(DLin-MC3-DMA) that is well tolerated and potently silences
transthyretin (14). Two siRNA-LNP studies focus in the treatment
of hepatic cancers and early indications suggest safe and active
treatments (15). Propensity of LNP systems to accumulate in
the liver has become a major obstacle in the extrahepatic
delivery of siRNA-LNP systems. Although preclinical studies
in prostate cancer (16) and immune cells (17) are promising,
distant tumor delivery has not been tested in the clinic. In order
to mitigate this higher Peg-lipid content is used to improve the
pharmacodynamic and biodistribution of LNP systems to the
tumor site (18-20).

Antisense oligonucleotides (ASO) offer another approach to
selectively target genes. Although ASOs are primarily used to
inhibit "undruggable" targets (21, 22), they may also be of use
against drug-resistant targets like that AR in ENZ-resistance
(ENZ-R) (23). Although AR extinction approaches using ASOs
(24) or shRNA (25) can reduce AR levels and inhibit tumor
growth in CRPC models, they have neither been studied in the
context of ENZ-R disease nor in combination with siRNA-
mediated cotargeting strategies. In this study, we first investi-
gated the efficacy of LNP siRNA tumor delivery in AR-negative
PC-3 and AR-positive ENZ-R LNCaP prostate cancer. Gene
silencing was first validated using LNP LUC-siRNA to silence
PC3 stably expressing firefly luciferace (PC3-M-luc) in vitro
followed by successful gene silencing in subcutaneous and
metastatic xenograft models. Once in vivo silencing of LUC
was demonstrated, we then evaluated combinatory gene silenc-
ing of CLU (using LNP siRNA) and AR (using an AR-ASO) in an
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ENZ-R LNCaP model and demonstrated enhanced apoptosis
and growth inhibition in vitro and in vivo.

Materials and Methods

Cell lines and reagents

LNCaP were kindly provided by Dr. LW.K. Chung (1992, MD
Anderson Cancer Center, Houston, TX) and ENZ-R MR49F
cell lines were generated, and maintained as previously described
(4, 26). PC-3M-luc (C6) cells, stably expressing firefly luciferase
protein, were obtained from Caliper Life Sciences and were
cultured in DMEM(Invitrogen) with 5% FBS and 2 mmol/L
L-glutamine. Supplementary Table S1 shows source and authen-
tication of cell lines. Permanent stocks of cells of authenticated or
purchased were prepared and were stored in liquid nitrogen until
use. Cells were used for experiments within 6 months. Enzaluta-
mide was purchased from Haoyuan Chemexpress Co., Limited.

siRNA and AR antisense oligonucleotide

All siRNA were purchased from Thermo Scientific or Integrated
DNA Technologies. The lower case letters indicates 2'Omethyl
modification, while upper case letter represents unmodified res-
idue and "s" indicates phosphorothioate modification.

Clusterin. Sense: 5'- AUGAUGAAGACuCuGCuGCdTdT- 3’
Antisense: 5" - GCAGCAGAGuCuuCAuCAuGC - 3’

Luciferase. Sense: 5" -cuuAcGcuGAGuAcuucGAdTsdT-3'
Antisense: 5'-UCGAAGUACUcAGCGUAAGATsdT-3’

GFP. Sense: 5 -AcAuUGAAGcAGcACGACuUdTsdT-3’
Antisense: 5'-AAGUCGUGCUGCUUCAUGUATsdT-3’

AR and scrambled (SCRB) antisense was supplied by Isis
Pharmaceuticals as previously described (4). The AR-ASO tar-
geting exon-1 and scrambled (SCRB) control sequences were
5-GCGACTACTACAACTT-3" and 5-CAGCGCTGACAACAGT-
TTCAT-3’, respectively. Prostate cells were treated with the
indicated oligonucleotides, using protocols described previous-
ly (23, 27, 28).

Lipid nanoparticle encapsulation of siRNA

The ionizable cationic lipids O-(ZZZZ-heptatriaconta-
6,9,26,29-tetraen-19-yl)-4-(N,N-dimethylamino)butanoate (DLin-
MC3-DMA) and 2,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-
dioxolane (DLin-KC2-DMA), and PEG lipids PEG-DMG and
PEG-DSG were purchased from Biofine International Inc. and have
been previously described (29-31). 1,2-distearoyl-sn-glycero-3-
phosphocholine (DSPC) and cholesterol were obtained from Avanti
and Sigma-Aldrich Co., respectively. The lipid composition of all
LNPs containing siRNA (LNP-siRNA) was cationic lipid/DSPC/
cholesterol/PEG-DMG (50/10/38.5/1.5; mol%) for in vitro,
while cationic lipid/DSPC/cholesterol/PEG-DSG (50/10/37.5/
2.5; mol%) or (50/10/35/5; mol%) for in vivo. LNP-siRNAs were
prepared using a microfluidic mixing apparatus as previously
described (30, 32).

Bioluminescence imaging

PC-3M-luc cells and tumors in mice were imaged using an
IVIS200 camera (Caliper Life Sciences) as previously described
(33). Data were acquired and analyzed using Living Image soft-
ware version 3.0 (Caliper Life Sciences).
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Cell proliferation assays

PC-3M-luc cells were seeded at a density of 5 x 10> in 96-well
plates, and ENZ-R MR49F and parental LNCaP were seeded at a
density of 1.25 x 10" in 48-well plates. Cell viability in PC-3M-luc
cells and cell growth in MR49F and LNCaP cells were measured by
crystal violet assay as previously described (34). Each assay was
done in triplicate three times.

Western blotting analysis

Total proteins were extracted using RIPA buffer (50 mmol/L
Tris, pH 7.2, 1% NP-40, 0.1% deoxycholate, 0.1% SDS, 100
mmol/L NaCl, Roche complete protease inhibitor cocktail) and
subjected to Western blot analysis as described previously (28).
Primary antibodies are shown in Supplementary Materials and
Methods.

Quantitative reverse transcription-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen Life
Technologies, Inc.) as previously reported (27). Primers
(described in Supplementary Table S2) were normalized to
B-actin levels as an internal standard, and the comparative cycle
threshold (C,) method was used to calculate relative quantifica-
tion of target mRNAs. Each assay was conducted in triplicate.

In vivo PC-3M-luc subcutaneous tumor

Male athymic mice were inoculated subcutaneously with 2 x
10° PC-3M-luc cells. Once tumor bioluminescence signals
reached approximately 1 x 10° photons/second, they were ran-
domly assigned for treatment. LNP containing indicated doses of
LUC-siRNA or GFP-siRNA as control was administered intrave-
nously (i.v.) through the lateral tail vein. To reduce possible
toxicity due to daily dosing, the dosing regimen was modified
from previous studies performed by Lee and colleagues where
repeat doses administered at 10 mg/kg for 3 consecutive days
followed by administration at days 7, 9, and 11 (16) were
modified to daily dosing of 7 mg/kg for 5 days. To evaluate LUC
expression, mice were then imaged on days 0 (before treatment),
3, 5, and 8 using an IVIS200 Imaging System and then sacrificed
on day 8. LUC expression (photons/second) measured at days 3,
5, and 8 was normalized to corresponding animal at day 0 and
expressed as relative increase (%). All animal procedures used in
this manuscript were approved and carried out according to the
guidelines of the Canadian Council on Animal Care and appro-
priate institutional certification.

In vivo PC-3M-luc metastasis model

PC-3M-luc cells (2 x 10°) were injected intravenously into
the tail vein of male athymic mice as described previously (33).
Once metastatic bioluminescence signals reached approximately
1 x 10° photons/second, they were randomly assigned to either 5
mg/kg LNP LUC-siRNA or GFP-siRNA as control and i.v. injected
through the lateral tail vein daily for 5 days. To evaluate LUC
expression, mice were then imaged on days 0 (before treatment),
3, 5, and 8 using an IVIS200 Imaging System and then sacrificed
on day 8. LUC expression measured at days 3, 5, and 8 were
normalized to corresponding animal at day 0 and expressed as
relative increase (%).

In vivo ENZ-R MR49F treatment

Male athymic mice were castrated and inoculated subcutane-
ously with 2 x 10° ENZ-R MR49F cells; mice were treated with
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ENZ at 10 mg/kg/each orally daily for maintenance of ENZ
resistance. Once tumors reached 100 mm?>, mice were randomly
assigned to 10 mg/kg SCRB or AR-ASO (administered intraper-
itoneally, i.p., once daily for 5 days and then three times per week
thereafter) plus either 5 mg/kg LNP siCLU or siLUC siRNA as
control with 2.5 or 5% PEG (i.v. through the lateral tail vein once
daily for 4 days and then 3 times per week thereafter). Tumor
volume and serum PSA was measured as previously described
(27). Mice were sacrificed on day 21 and tumors were harvested
for evaluation by Western blot analyses, mRNA expression by real-
time monitoring of qPCR, and IHC. Treatment was extended over
a 3-week period, with four daily injections in the first week and
three daily injections during the second and third weeks

IHC

IHC was performed as previously described previously (27).
All comparisons of staining intensities were made at x200
magnifications.

Statistical analysis

All in vitro data were assessed using the Student ¢ test. All in vivo
data were compared using the Kruskal-Wallis test (JMP version
8). Levels of statistical significance were set at P < 0.05.

Results

LNP LUC-siRNA decreases LUC expression in PC-3M-luc
subcutaneous xenografts

To assess the effects of LNP siRNA tumor delivery in vivo, the
expression of luciferase in PC-3M-luc stably transfected cells
treated with LNP LUC-siRNA containing DLin-KC2-DMA
(16, 31) was examined by the IVIS imaging system. The ionizable
cationic lipid, DLin-KC2-DMA, is highly active in the liver (31)
and also previously shown to silence AR and reduce PSA levels
upon intravenous administration in LNCaP tumor model (16).
PC-3M-luc cells showed significant correlation between mean
bioluminescence and both the total numbers of these cells in
vitro (Supplementary Fig. S1) and mean subcutaneous tumor
volume in vivo (Supplementary Fig. S2). LUC siRNA transfected
with Lipofectamine 2000 or delivered in LNP systems decreased
the expression of LUC in a dose-dependent manner in PC-3M-luc
in vitro (Fig. 1A) without changing the cell numbers, as evaluated
by crystal violet assay (Fig. 1B).

The in vivo activity of LNP LUC-siRNA containing DLin-KC2-
DMA was first evaluated using PC-3M-luc subcutaneous xeno-
grafts. After tumor bioluminescence signals reached approximate-
ly 1 x 10® photons/second, mice were randomly assigned for
treatment with 7 mg/kg LNP LUC-siRNA (5 mice) or LNP GFP-
siRNA (5 mice) as control. At baseline, mean bioluminescence
signals were similar in LNP LUC and GFP-siRNA groups (1.22 and
1.17 x10° photons/second, respectively). LNP LUC-siRNA exhib-
ited LUC silencing effects in PC-3M-luc xenografts as early as day 3
after initial administration by maintaining LUC expression at
baseline levels, whereas LNP GFP-siRNA treated showed a 143%
increase when normalized to day 0 (Fig. 1C). Significant silencing
was achieved at day 8 as the LUC expression was below baseline at
75%, whereas LNP GFP-siRNA treatment showed a 263% increase
in LUC expression. The difference between LNP LUC-siRNA and
control LNP GFP-siRNA corresponded to approximately 3-fold
decrease in LUC expression (Fig. 1C). As expected, LUC protein in
tumors collected from representative PC-3M-luc xenografts (n =3

Clin Cancer Res; 21(21) November 1, 2015

Downloaded from clincancerres.aacrjournals.org on March 16, 2020. © 2015 American Association for Cancer Research.

4847


http://clincancerres.aacrjournals.org/

Published OnlineFirst June 23, 2015; DOI: 10.1158/1078-0432.CCR-15-0866

Yamamoto et al.

A
0.2 0.5 1 pg/mL 2 5 10 nmol/L
< - F
g 1.20E+07 < 1.20E+07
© =2
9 T LO0E+07 7 g x | 2 1.00E+07 - 'ﬁ\%
2 5 @ S
Q
o § 8.00E+06 |  =—@=LNP GFP- S 9 8.00E+06 )
= 3 SiRNA = 3 —&— GFP siRNA
S 6.00E+06 | . S 6.00E+06 -
< g o ;"F'{T\I;UC - g — o= LUCSiRNA
z 5 4.00E+06 | & _ = & 4.00E+06-| &,
@ c ¢ -8 =2 & N
o $ 2.008406 | o £ 2.00E+06 - Yo
o L ‘-.
s 0.00E+00 - : - © 0.00E+00 . ;
- ug/mL 02 05 1 nmol/L 2 5 10
B 0.0 - 0.10
g )
g 008 %:i”"é 5 0.08 fﬂ—i\_i
.8 Ne)
2 006 2 006
s A
Z 004 ) Z 004 )
= —m— LNP GFP-siRNA = —@— GFP-siRNA
< 002 2 002
z 9 — o= LNP LUC-SiRNA e — = LUC siRNA
(] o]
© 0.00 . . . © 0.00 . . .
0.2 0.5 1 ug/ml 2 5 10 oL
LNP GFP-siRNA LNP LUC-siRNA
j i :
_ 400
B LNP GFP-siRNA
DO 4 = < R
: 02 £ 300 DLNP LUCSIRNA
.. 4 Bl
: g ‘_E 200
. c Q
o =
5 £ 100
Eai &)
1L 0- -
i ¥ DO D3 D5 D8
i x108
D E § 120
(%]
g = 100
5 £ *
LNP GFP-siRNA  LNP LUC-siRNA 85 6o
<9
LUC|----——-—-| %\2 40
< 20
B-Actin |--——— _l S 0
-
PC3M-luc LNP GFP- LNP LUC-
SiRNA  siRNA
PC3M-luc

Figure 1.

DLin-KC2-DMA LNP LUC-siRNA decreases LUC expression in PC-3M-luc subcutaneous xenograft model in vitro and in vivo. A, PC-3M-luc cells were seeded in 96-well
plates and treated for 48 hours with the indicated doses of LUC or GFP siRNA with or without LNP. To evaluate LUC emission, PC-3M-luc cells were imaged
using the IVIS200 Imaging System and quantitated below corresponding images. Bars, SD. B, PC-3M-luc cell numbers were determined by crystal violet assay. Bars,
SD. C, mice were inoculated subcutaneously with PC-3M-luc cells. Once tumor bioluminescence signals reached approximately 1x10° photons/second, they were
randomized into two groups receiving 7 mg/kg LNP LUC-siRNA or LNP GFP-siRNA as control through daily i.v. injection for 5 days. To evaluate LUC emission
(photons/second), mice were imaged using the 1VIS200 Imaging System on days O (before treatment), 3, 5, and 8 and emission values were normalized to
corresponding baseline (day 0) and expressed as relative increase (%) represented in a bar graph below images. Bars, SEM. D, total proteins were extracted on
day 8 from three representative xenograft tumors from each group and LUC and B-actin were analyzed by Western blotting. E, mRNAs were extracted from
five xenograft tumors from each groups and LUC mRNA were analyzed by quantitative real-time PCR. Bars, SEM. *, P < 0.05.
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D5
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DLin-KC2-DMA LNP LUC-siRNA decreases LUC expression in PC-3M-luc metastatic model in vivo. PC-3M-luc cells were injected into the tail vein of mice.
Once metastatic bioluminescent signals reached approximately 1x10° photons/second, they were randomly assigned to either 5 mg/kg LNP LUC-siRNA or
GFP-siRNA as control and given daily i.v. injections for 5 days. Evaluation of mice LUC emission (photons/second) was done using the IVIS200 Imaging System
on days 0 (before treatment), 3, 5, and 8 and emission values were normalized to corresponding baseline (day 0) and expressed as relative increase (%). Bars,

SEM. *, P < 0.05.

per group) decreased after treatment with LNP LUC-siRNA as
opposed to LNP GFP-siRNA treatment (Fig. 1C and D) and
transcript levels decreased by 40% as assessed by quantitative
real-time PCR (Fig. 1E). The reduction of luciferase detection was
not due to toxicity induced by LNP siRNA treatment as no
significant body weight loss was observed (Supplementary Fig.
S3A), and more importantly, tumor volume increased regardless
of the treatment (LNP GFP or LUC-siRNA; Supplementary Fig.
S3B) while showing significant reduction in LUC detection when
treated with LNP LUC-siRNA (Supplementary Fig. S3C-S3E).

LNP LUC siRNA decreases LUC expression in PC-3M-luc in vivo
metastatic model

Next, the in vivo activity of LNP LUC-siRNA containing DLin-
KC2-DMA was evaluated in the PC-3M-luc metastatic model. To
establish an in vivo metastatic cancer model, highly metastatic PC-
3M-luc cells stably expressing luciferase were injected into the tail
vein of male nude mice. After metastatic bioluminescent signals
reached approximately 1 x 10° photons/second, mice were
randomly assigned for treatment with 5 mg/kg LNP LUC-siRNA
(5 mice) or LNP GFP-siRNA (5 mice) as control. Atday 3, 69% of

www.aacrjournals.org

LUC expression was detected when treated with LNP LUC-siRNA
when normalized to day 0 in comparison with 165% when treated
with LNP GFP-siRNA (Fig. 2). Significant LUC silencing was
observed in day 5 reaching >3-fold difference with 71% LUC
activity when treated with LNP LUC-siRNA in comparison with
224% when administered with LNP GFP-siRNA treatment (Fig. 2).
At day 8, LUC expression was maintained below baseline levels
at 70% when treated with LNP LUC-siRNA, while increased
LUC expression at 416% when treated with LNP GFP-siRNA
corresponding to a substantial 6.5-fold difference in LUC activity

(Fig. 2).

DLin-MC3-DMA-based LNP CLU-siRNA systems enhance AR-
ASO-induced apoptosis in parental and ENZ-R LNCaP cells in
vitro

We previously reported that CLU inhibition represses ENZ-
induced activation of AKT and MAPK pathways, and that com-
bined ENZ plus OGX-011 (CLU ASO) synergistically delays CRPC
LNCaP tumor growth in vivo (4). Since cotargeting the AR and CLU
in CRPC is a promising synergistic strategy, we therefore used the
most clinically advanced ionizable cationiclipid DLin-MC3-DMA
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(14) to deliver CLU-siRNA and knockdown CLU in in vivo ENZ-
resistant MR49F cells. Our in vitro data indicate that LNP CLU-
siRNA reduces CLU and PSA protein levels, as well as the phos-
phorylation of AKT and extracellular signal-regulated kinase (35)
in ENZ-R MR49F and parental LNCaP cells (Fig. 3A and B). LNP
CLU-siRNA reduces mRNA expression of CLU dose dependently
(Fig. 3C). Furthermore, LNP CLU-siRNA significantly enhanced
ENZ activity and reduced cell viability in a dose-dependent
manner (Supplementary Fig. S4), similar to reports using OGX-
011 (4). We next confirmed this synergistic effect of LNP CLU-
siRNA with AR knockdown using AR-ASO. LNP CLU-siRNA
significantly enhanced AR-ASO activity and reduced cell viability
in a dose-dependent manner in ENZ-R MR49F (Fig. 3D) and
parental LNCaP cells (Fig. 3E). In addition, combination of LNP
CLU-siRNA with AR-ASO increased caspase-dependent apopto-
sis, as shown by cleaved PARP and caspase-3 activity in ENZ-
resistant MR49F (Fig. 3F) and parental LNCaP cells (Fig. 3G).
Collectively, these data indicate that LNP CLU-siRNA enhances
AR-ASO-induced apoptosis in vitro.

LNP CLU-siRNA enhances AR-ASO-induced inhibition of ENZ-
R LNCaP cell growth in vivo

We previously reported that cotargeting the AR (with ENZ) and
CLU (with OGX-011) delayed CRPC LNCaP tumor progression
in vivo (4). Because the AR commonly remains active in ENZ-
resistant disease, the in vivo anticancer activity of LNP CLU-siRNA
containing DLin-MC3-DMA was evaluated using a cotargeting
strategy with AR-ASO in ENZ-R MR49F LNCaP xenografts. After
MR49F tumors exceeded 100 mm?, mice were randomly assigned
for treatment with AR-ASO plus either 5 mg/kg LNP CLU-siRNA
with 2.5% or 5% PEG or LUC-siRNA as control with 2.5% or 5%
PEG. Different PEG molar% was tested as PEG-lipid is a well-
characterized tool to improve pharmacokinetics as well as divert
distribution to extrahepatic sites (20). At baseline, mean tumor
volume and serum PSA levels were similar in both groups. Of
note, 2.5% and 5% PEG LNP CLU-siRNA significantly reduced
mean tumor volume from 1,451 mm?> and 1,444 mm? to 656
mm?> and 826 mm? by 3 weeks (***, P < 0.001 and **, P < 0.01,
respectively), compared with LNP LUC-siRNA (Fig. 4A); serum
PSA levels were also significantly lower (**, P<0.01 and *, P<0.05,
respectively; Fig. 4B). Waterfall plots of the best tumor volume
and serum PSA decline per mouse at any time in 2.5% and 5%
PEG are shown in Fig. 4C-F, respectively. LNP CLU-siRNA for-
mulated with 2.5% PEG trended to better tumor volume and
serum PSA decline compared with 5% PEG. CLU protein expres-
sion in tumors collected from representative MR49F xenografts
(n =3 per group) decreased after treatment with LNP CLU-siRNA
(Fig. 5A) compared with LNP LUC-siRNA (control). CLU mRNA
levels were significantly decreased after treatment with 2.5% or
5% PEG LNP CLU-siRNA systems compared with LNP LUC-
siRNA (**, P < 0.01 and *, P < 0.05, respectively; Fig. 5B). LNP
formulated with 2.5% PEG showed enhanced silencing as indi-
cated by reduced levels of CLU protein and mRNA compared with
5% PEG in vivo. As expected, AR silencing is observed in all mice
treated with AR ASO in comparison with the Scramble control
(Fig. 5C). IHC analysis revealed significantly decreased CLU
expression after treatment with 2.5% PEG LNP CLU-siRNA LNP
compared with 2.5% PEG LNP LUC-siRNA as control (***, P <
0.001; Fig. 5D and E). In addition, tumors treated with 2.5% PEG
LNP CLU-siRNA had significantly higher apoptosis rates than
2.5% PEG LNP LUC-siRNA as shown by increased TUNEL stain-
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ing (*, P < 0.05; Fig. 5F). Collectively, these results suggest that
LNP siRNA delivery systems potently silence CLU and induce
apoptosis in ENZ-R prostate cancer in vivo.

Discussion

Potent AR pathway inhibitors like abiraterone and ENZ pro-
long survival in men with CRPC but resistance develops in many
initial responders, frequently heralded by rising PSA levels indic-
ative of continued AR signaling (3). Therefore, reactivation of AR
activity remains a central driver of post-AR pathway inhibitor
CRPC progression (25), and can result from AR gene amplifica-
tion, promiscuous AR mutants, splice variants, androgen biosyn-
thesis, and activation by oncogenic signaling pathways. ASO
offers an approach to selectively inhibit "undruggable" or drug-
resistant targets (21, 22), which includes nuclear AR in the context
of ENZ-resistance. Although AR ASOs (24) or shRNA (25) can
inhibit CRPC xenograft growth, they have not been studied in the
context of ENZ-R disease. In this study, we used a next-generation
constrained-ethyl (cEt) modified AR-ASO (Gen 2.5) to suppress
AR levels in vivo (23, 36, 37). The improved resistance against
nuclease-mediated metabolism afforded by Gen 2.5 chemistry
results in a significantly improved tissue half-live in vivo and a
longer duration of action with a more intermittent dosing sched-
ule. We show that systemic administration of this AR-ASO potent-
ly suppressed levels of AR and delayed progression in vivo com-
pared with controls.

In addition to directly targeting the AR in post-AR pathway
inhibitor CRPC, defining interactions between the AR and
adaptive survival pathways will define mechanisms supporting
treatment-resistant CRPC and guide new combinatorial strat-
egies that delay progression. As a key mediator of the stress
response, CLU is induced by AR pathway inhibition and its
overexpression confers treatment resistance in prostate cancer
(4-7). CLU has been targeted in prostate cancer where the CLU
inhibitor OGX-011 (custirsen, OncoGenex Pharmaceuticals)
potentiates anticancer therapies in many preclinical models
(12), including prostate cancer (4, 27). CLU suppression also
inhibits epithelial-to-mesenchymal transition and suppresses
prostate cancer metastatic progression (33). Previous reports
show that CLU inhibition abrogates cross-talk activation of AKT
and MAPK pathways following AR blockade, further reducing
AR transcriptional activity (4). Our results are consistent with
previous reports, where LNP CLU-siRNA reduces expression of
PSA as well as phosphorylation of AKT/S6 and (ERK)/ RSK
signaling pathways. These data provide the basis to investigate
the efficacy of LNP siRNA tumor delivery and LNP CLU-siRNA
sensitized AR-ASO AR knockdown activity in ENZ-R prostate
cancer in in vitro and in vivo models.

Although monotargeting of AR or CLU with ASO or siRNA has
been reported previously (16, 24, 35), and combinatorial cotar-
geting the AR and CLU in ENZ-R CRPC with nucleotide-based
therapeutics is biologically rational, combining two antisense
drugs in vivo is precluded by toxicity induced by doubling the
dose of the oligonucleotide backbone. To circumvent this back-
bone toxicity limitation, we combined the AR-ASO with a CLU
LNP-siRNA formulation. We first show that LNP-siRNA could
silence luciferase gene in both subcutaneous and metatastic PC3-
Lucxenograft models. The LNP systems tested in vivo incorporated
5% PEG-lipid with C-18 acyl chains which improves circulation
time (20) thus improving the accumulation at extrahepatic sites.
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Figure 3.

DLin-MC3-DMA LNP CLU-siRNA enhances AR-ASO-induced apoptosis in ENZ-R and parental LNCaP in vitro. MR49F (A) and LNCaP (B) cells were treated with
LNP CLU or LUC-siRNA (control) with the indicated concentrations for 48 hours. Western blot analyses were conducted for CLU, PSA, pAKT/AKT, pS6/S6,
PERK/ERK, and p-RSK/RSK, using vinculin as a loading control. C, quantitative reverse transcription PCR was used to evaluate levels of CLU mMRNA. MR49F (D) and
LNCaP (E) cells were treated with indicated concentrations of LNP CLU or LUC-siRNA. The next day, cells were treated with 50 nmol/L AR-ASO followed by
indicated concentrations of LNP CLU or LUC-siRNA for 96 hours. Cell growth were determined by crystal violet assay and compared with LNP LUC-siRNA.
Bars, SD. *, P < 0.05. MR49F (F) and LNCaP (G) cells were treated with indicated concentrations of LNP CLU or LUC-siRNA. The next day, cells were treated with
50 nmol/L AR-ASO followed by indicated concentrations of LNP CLU or LUC-siRNA for 96 hours and CLU. AR, PARP, caspase- 3, and vinculin were analyzed by
Western blotting.
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2.5% PEG (12 mice) or 5% PEG (11
mice). Injections were administered
i.v. once daily for 4 days and then
three times per week thereafter. The
mean tumor volume (A) and the
serum PSA level (B) were compared
between the five groups + SEM.
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As shown by Lee and colleagues, the LNP platform using the
cationic lipid DLin-KC2-DMA has successfully silenced AR in
LNCaP xenograft tumor model (16). This was further improved
with the use of a more potent cationic lipid DMAP-BLP to which
doses as low as 1 mg/kg contributed >50% gene silencing (Sup-
plementary Fig. S3). Although DMAP-BLP has been shown to be
potent and safe in the brain (30), full toxicity profile of this lipid
has yet to be characterized. However, the most potent lipid in the
clinic, DLin-MC3-DMA, has shown to be tolerable and potent
(14) and tested. As shown in Figs 4 and 5, combinatory treatment
of AR and CLU silencing decreased PSA levels as well as tumor
volume. Interestingly, LNP formulated with 2.5% PEG was more
effective compared with 5% PEG in vivo. This can be attributed to
PEG interfering with release of siRNA to the cytosol. Currently,
less than 3% of siRNA of total siRNA delivered is detected in the
cytosol using LNP systems with C14 Peg-lipid (38). With addi-
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LNP LUC-siRNA

A\l A\l

LNP CLU-siRNA

+ AR-ASO + AR-ASO

tional PEG coating on the LNP surface, the PEG can also interfere
with intracellular uptake of particles. Although 5% PEG extends
circulation time, the activity of the LNP system would be com-
promised, this can be overcome by the incorporation of targeting
moieties (such as DUPA or folate) conjugated to PEG-lipids (39).
Targeting siRNA comprising of a targeting moiety conjugated
directly to the siRNA has been tested in the clinic as Gal-Nac
conjugated siRNA accumulates and provide function in the liver
(40). However, in order to reach extrahepatic sites, such an
approach requires long circulation time, which can only be
achieved by employing a delivery system. Alternative means to
improve treatment also include coencapsulation of AR and CLU
siRNA in the same LNP as this would ensure the same cells would
have reagents to silence both AR and CLU. Such approach has
been tested showing that up to five different targets silence key
players within similar or divergent biologic pathways (41). In
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Effects of LNP CLU-siRNA in ENZ-R
LNCaP xenografts. A, mice were
sacrificed at day 21 and total proteins D
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representative xenograft tumors from
each group. CLU was analyzed by
Western blotting and B-actin was used
as a loading control. B, mRNA were
extracted from all xenograft tumors
from each groups (n = 11-12) and CLU
mMRNA were analyzed by quantitative
real-time PCR. C, same samples as A
were analyzed for AR levels and
GAPDH was used as a loading control.
D, CLU and Tunnel immunostaining in
ENZ-R MR49F xenografts. All tumors
from each group (n = 11-12) were
collected and CLU (E) and TUNEL (F)
were evaluated by IHC analysis. Bars,
SEM. ***, P < 0.001; **, P < 0.01;
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combination with other improvements to the LNP such as devel-
oping more potent cationic lipids or using biocompatible LNP
systems would allow for improved therapeutic index (42).

Our results indicate that LNP-LUC siRNA silences its target
gene in both subcutaneous and metatastic PC3-Luc xenograft
models, while LNP CLU-siRNA containing DLin-MC3-DMA
demonstrates anticancer activity in vivo by significantly enhanc-
ing AR-ASO induced suppression of ENZ-R LNCaP tumor growth
and serum PSA levels compared with control siRNA. These
results demonstrate that LNP siRNA can silence target genes in
vivo, enabling inhibition of traditionally non-druggable genes
like CLU and other promising cotargeting approaches in ENZ-R
CRPC therapeutics.
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